EUROPA CINEMAS
průvodce digitálním kinem

© EUROPA CINEMAS
Autoři: Philippe Loranchet, Europa Cinemas
Obsah

Předmluva ... 4
I. Principy digitalizace .. 6
 Od fotochemie k bitům a bajtům .. 6
 Digitalizace nemusí nutně znamenat vyšší kvalitu .. 8
 Pixel = Picture + Cell ... 8
 Nástup digitálního kina .. 9
II. Metody digitální projekce .. 11
 Technická omezení filmového pásu .. 11
 Výhody digitální projekce .. 11
 Technologie DMD/DLP ... 11
 Technologie D-ILA .. 13
 Technologie SXRD .. 13
III. Čtyři parametry obrazu ... 14
 Světelný tok ... 14
 Kolorimetrický prostor ... 14
 Rozlišení .. 14
 Kontrast ... 14
IV. Vybavení .. 15
 Projektory .. 15
 Servery ... 17
 Kompresní normy ... 17
V. Zavádění norem .. 19
 35mm: Moc celosvětového standardu ... 19
 DCI (Digital Cinema Initiatives) ... 19
 Francouzský standard AFNOR a CST ... 19
 European Digital Cinema Forum (EDCF) ... 19
 Šifrování a bezpečnost .. 20
VI. Klíčové mezníky v historii digitální kinematografie .. 21
VII. Internetové adresy .. 22
VIII. Glosář .. 23
IX. Poděkování .. 24
Předmluva

V současné době není nikdo schopen s jistotou říci, kdy se digitální projekce stane normou v kinech po celém světě. Mezi lidmi z oboru však panuje široká shoda v tom, že k této změně dojde nejspíše během příštích deseti let, a to především z ekonomických důvodů, ovšem také z důvodů technických a estetických výhod, které s sebou digitální formát přináší. Digitální projekce byla během posledních pěti let již mnohokrát příležitostně použita. Počet kinosálů vybavených potřebnou technikou je stále ještě poměrně nízký, ovšem celkem je na celém světě v provozu již více než 400 digitálních projektorů.

V současné době se ve filmovém průmyslu objevují dva možné modely přechodu na digitální technologii.

První model předpokládá, že se digitální kina budou rozšiřovat postupně a že počet instalovaných digitálních projektorů poroste úměrně s tím, jak budou spouštěny různé programy podporující zavádění digitálního kina financované filmovým průmyslem samotným nebo z veřejných prostředků. Příkladem takového programu je program Digital Screen Network organizovaný Britskou filmovou radou. Podle tohoto scénáře bude ještě po mnoho následujících let existovat smíšená ekonomika, kde vedle sebe bude existovat klasická i digitální projekce.

Druhý model předpokládá mnohem rychlejší přechod vynucený velkými filmovými studii v Hollywoodu, která se rozhodnou prosadit digitální projekci jako mezinárodní standard. Podle tohoto scénáře se budou muset distributorové i provozovatelé kín rychle přizpůsobit změně podmínek a zvážit na jedné straně úspory, které jejich budou moci dosáhnout tím, že nebudou muset vyrábět distribuční kopie, a srovnat je s velkými investicemi do nového vybavení kinosálů.

Provozovatelé kín s několika promítacími sály se budou muset rozhodnout, které sály převedou na digitální projekci nejdříve – je dost možné, že kapacita kinosálu, který bude používat ještě starou technologii, nebude odpovídat komerčnímu potenciálu filmů promítaných v digitálním formátu.

Pokud jde o filmová studia, mnohá z nich budou i v budoucnosti natáčet na 35mm film, i když dokončené filmové dílo bude promítáno digitálně. Na druhé straně je pro mnohé lákavým argumentem také dlouhodobá stabilita digitálního formátu: mnoho klasických filmů bylo zachráněno pro současné i budoucí generace diváků.

Někteří poukazují na paralelu s přechodem od němého filmu ke zvukovému, k němuž došlo v letech 1927 až 1930. Celý filmový průmysl uskutečnil tento přechod s překvapivou rychlostí, a to i přes odpor a nedůvěru vyjadřovanou z mnoha stran. Poté, co byl přechod zahájen, bylo zájmem každého dokončít jej co nejrychleji – i když v některých zemích jako např. v SSSR nebo v Japonsku trval celý proces výrazně déle. Srovnání s přechodem na zvukový film je samozřejmě jen hrubé, neboť ozvučené filmy nabídly návštěvníkům kín zcela nový zážitek, který si diváky okamžitě získali. Digitální projekce oproti tomu diváků z hlediska promítání níč nového nenabídne; mnoho z nich získává od sokola žádného rozdílu vůbec nepovšimne. Co bude digitální projekce schopna nabídnout, bude větší pestrost programové skladby – a to je z hlediska diváků, provozovatelů kín, distributorů i producentů pravděpodobně největší přínos této technologie. Aby však bylo možné tento potenciál plně využít, bude nutné větší podrobnou debatu mezi jednotlivými aktéry filmového průmyslu a dále také bude nutné projít testovací fází, jejíž trvání bude v každé zemi jiné.
V současné době nelze přesně odhadnout, co lze v nadcházejících letech očekávat. Jsme však přesvědčeni, že je nanejvýš důležité, aby evropští provozovatelé kin, kteří chtějí i nadále v konkurenci ostatní produkce prosazovat evropské filmy, aktuálně sledovali vývoj digitálního kina a drželi s ním krok. S tímto cílem – a s podporou programu MEDIA probíhajícího pod záštitou Evropské unie – připravila síť kin Europa Cinemas tohoto technického průvodce, jehož úkolem je nabídnout základní informace o principech digitální projekce v kinech. Doufáme, že tato publikace napomůže všem evropským provozovatelům kin přijmout správná rozhodnutí o dalším rozvoji jejich společností.

Ian Christie a Nico Simon
viceprezidenti
Europa Cinemas
I. Principy digitalizace

Až doposud byly jednotlivé fáze filmové výroby – počínaje natáčením až po promítání – jednoznačně definovány. 35mm film sloužil jako spojovací článek mezi řadou odlišných procesů (natáčení, střih, postprodukce, efekty, projekce). „Oddělením“ obrazu od jeho fyzického nosiče přesouvá proces digitalizace filmovou výrobu a projekci ze světa fotochemie do světa bitů a bajtů. Tato změna má dopad na celý výrobní proces a hranice mezi jednotlivými fázemi filmové výroby se stírají.

Digitální technologie ruší hranice mezi jednotlivými fázemi filmové výroby.

■ Od fotochemie k bitům a bajtům

Filmy určené pro promítání v kinech se vyrábějí prostřednictvím celého sledu fotochemických transformací. Při natáčení i při promítání se používá 35mm film, který je citlivý na světlo. s pomocí duplikace a inverze se získá pozitiv, který je reprodukcí originálu. Promítání na filmové plátno je pouhým mechanickým a optickým postupem, při němž je filmový obraz zvětšen ve srovnání s původním rozměrem přibližně milionkrát. Zobrazením sledu promítaných obrazů kromě toho vzniká ještě iluze pohybu.
První fáze procesu filmové výroby, která začala těžit z výhod digitálních technologií, byl střih. Namísto toho, aby střihači museli v bílých rukavicích manipulovat s cívky filmů, sestřihávají ve specializovaných programech jako např. Film Composer od firmy Avid digitalizovaný filmový záznam v nízkém rozlišení. Díky tomuto postupu zobraží fyzická manipulace s filmovým materiálem méně času, a střihač i režisér se tak mohou více věnovat tvůrčí části výrobního procesu. Po sestřihání obdrží laboratoř digitální seznam střihů, podle něhož je následně sestřihán negativ. V nedávné době se otevřely nové možnosti s příchodem nových zařízení umožňujících digitalizaci filmového obrazu ve vysokém rozlišení a přenes digitálního obrazu na 35mm film.

Použití digitální barevné korekce nabízí filmovému režiséřovi a hlavnímu kameramanovi neomezenou kontrolu nad estetickým a uměleckým vyjádřením. V současné době se střihačům nabízejí nové programy jako např. Film Composer od firmy Avid digitalizovaný filmový záznam v nízkém rozlišení. Díky tomuto postupu zobraží fyzická manipulace s filmovým materiálem méně času, a střihač i režisér se tak mohou více věnovat tvůrčí části výrobního procesu. Po sestřihání obdrží laboratoř digitální seznam střihů, podle něhož je následně sestřihán negativ. V nedávné době se otevřely nové možnosti s příchodem nových zařízení umožňujících digitalizaci filmového obrazu ve vysokém rozlišení a přenes digitálního obrazu na 35mm film.

Vzhledem k tomu, že jsou v současnosti filmy doposud distribuovány především klasickým způsobem, je digitální intermediát převeden na 35mm negativní film, z něhož je potom možno vyrobit distribuční kopie. Tento DI master je také možné převeden na video master určený pro výrobu DVD nebo pro televizní vysílání.

Řetězec zpracování analogového 35mm filmu s digitální barevnou korekci

V budoucnosti, v době, kdy obecně distribuovat digitální formát bude ještě méně rozšířen, je digitální intermediát převeden na 35mm negativní film, z něhož je potom možno vyrobit distribuční kopie. Tento DI master je také možné převeden na video master určený pro výrobu DVD nebo pro televizní vysílání.

Prviny fáze procesu filmové výroby, která začala těžit z výhod digitálních technologií, byl střih. Namísto toho, aby střihači museli v bílých rukavicích manipulovat s cívky filmů, sestřihávají ve specializovaných programech jako např. Film Composer od firmy Avid digitalizovaný filmový záznam v nízkém rozlišení. Díky tomuto postupu zobraží fyzická manipulace s filmovým materiálem méně času, a střihač i režisér se tak mohou více věnovat tvůrčí části výrobního procesu. Po sestřihání obdrží laboratoř digitální seznam střihů, podle něhož je následně sestřihán negativ. V nedávné době se otevřely nové možnosti s příchodem nových zařízení umožňujících digitalizaci filmového obrazu ve vysokém rozlišení a přenes digitálního obrazu na 35mm film.

Použití digitální barevné korekce nabízí filmovému režiséřovi a hlavnímu kameramanovi neomezenou kontrolu nad estetickým a uměleckým vyjádřením. V současné době se střihačům nabízejí nové programy jako např. Film Composer od firmy Avid digitalizovaný filmový záznam v nízkém rozlišení. Díky tomuto postupu zobraží fyzická manipulace s filmovým materiálem méně času, a střihač i režisér se tak mohou více věnovat tvůrčí části výrobního procesu. Po sestřihání obdrží laboratoř digitální seznam střihů, podle něhož je následně sestřihán negativ. V nedávné době se otevřely nové možnosti s příchodem nových zařízení umožňujících digitalizaci filmového obrazu ve vysokém rozlišení a přenes digitálního obrazu na 35mm film.

Vzhledem k tomu, že jsou v současnosti filmy doposud distribuovány především klasickým způsobem, je digitální intermediát převeden na 35mm negativní film, z něhož je potom možno vyrobit distribuční kopie. Tento DI master je také možné převeden na video master určený pro výrobu DVD nebo pro televizní vysílání.

Řetězec zpracování analogového 35mm filmu s digitální barevnou korekci

V budoucnosti, v době, kdy obecně distribuovat digitální formát bude ještě méně rozšířen, je digitální intermediát převeden na 35mm negativní film, z něhož je potom možno vyrobit distribuční kopie. Tento DI master je také možné převeden na video master určený pro výrobu DVD nebo pro televizní vysílání.

<table>
<thead>
<tr>
<th>Optická oblast</th>
<th>Digitální kamera</th>
<th>Digitální projektor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kopírování dat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribuce</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plně digitální výrobní řetězec

Digitalizace nemusí nutně znamenat vyšší kvalitu

Podstatou digitalizace je jednoduše převod analogových fluktuací (např. světla nebo zvuku) do číselné podoby. Získané číselné vyjádření původních fluktuací je následně zpracováváno počítačem, ovšem na konci celého řetězce je nutno číselný formát převést zpět na měnící se světelné vlny zobrazované na promítacím plátně v případě obrazu nebo na vibrace vytvářené reproduktory v případě zvuku. Ze samotného faktu digitálního zpracování automaticky nevyplývá, že výsledek bude dokonalý, stejně jako to nevyplýválo v případě starší analogové technologie. Kvalita zvukového CD může být lepší než kvalita klasické LP gramodesky, ovšem silně komprimirovaný MP3 soubor se v kvalitě reprodukce nevyrovná zastaralé analogové kazetě. Obecně platí, že čím větší množství informací digitalizace obsahuje, tím vyšší bude kvalita konečného výsledku. Na druhé straně se velký objem informací přináší své vlastní problémy (týkající se potřebného výpočetního výkonu a úložné kapacity) a nelehkým ůkolem vý zkumných pracovníků je nalézt nejlepší možný kompromis mezi požadovanou kvalitou a ekonomickými omezeními hromadné výroby.

Pixel = Picture + Cell

Základní jednotkou digitálního obrazu je pixel (zkratka z anglického „picture element“ (obrazový prvek) nebo „picture cell“ (obrazová buňka)). Z praktického hlediska spočívá digitální analýza obrazu v tom, že na obraz aplikujeme mřížkový rastr a následně zaznamenáme jas a barvu jednotlivých bodů této mřížky. Čím jemnější mřížku aplikujeme, tím více bude výsledek naší analýzy odpovídat realitě.

Číslenou hodnotu bodů na mřížce měříme dle plynulé stupnice, jejíž rozsah je od černé až po bílou. Na čím větší počet dílků je tato stupnice rozdělena, tím přesnější je analýza a tím blíže bude mít konečný výsledek ke skutečnosti. Analýza rozlišující 1 024 úrovni odpovídá digitalním vyjádření rozlišení 10 bitů (“bit” je zkratka pro anglické „Binary Digit“ (binární číslice) a jedná se o základní jednotku v počítači uložené informace, která může mít buď hodnotu 0, nebo 1), analýza rozlišující 4 096 úrovni odpovídá rozlišení 12 bitů a analýza rozlišující 16 384 odpovídá 14 bitům.
Čím větší je počet pixelů popisujících obraz, tím větší je rozlišení.
Čím větší je barevná hloubka, tím lepší je vykreslení barev a jasu.

Nástup digitálního kina

V současné době je digitální technologie nejčastěji používána při postprodukci (střih, speciální efekty a barevná korekce). Tato technologie nabízí režisérům celou paletu nástrojů, která rozšířuje možnosti jejich uměleckého vyjádření. 35mm film má však stále ještě mnoho výhod ve fázi natáčení a promítání.

![Diagram počtu pixelů a řádek]

V roce 2000 se začaly digitální technologie objevovat v oblasti speciálních efektů a střihu.
V roce 2005 výrazně vzrostl podíl filmů s digitální postprodukci.
II. Metody digitální projekce

■ Technická omezení filmového pásu

I přes své nepopíratelné výhody, které mu pomohly přežít více než jedno století, má 35mm film některá zásadní technická omezení. Za prvé je i přes úspěchy dosažené výrobci filmů nemožné dále zmenšovat velikost stříbrných zrn obsažených ve filmovém nosiči pod jejich současnou velikost (cca 6 mikrometrů). Jemnost fotografického obrazu na bázi stříbra se blíží své asymptotě, nebo-li svému optimu. Za druhé, světelný tok projektorů nelze zvyšovat donekonečně. Nejvýkonnější lampy, které jsou v současné době k dispozici, se svými 7 000 wattů již přinášejí celou řadu technických problémů s chlazením. Při výkonu nad 10 000 wattů by vznikající teplo filmový materiál jednoduše roztavilo! I přes veškerá ochranná opatření se na 35mm kopie filmů přichytává prach a filmový materiál je vystaven mechanickému opotřebení. Obě dvě tyto skutečnosti mají nepříznivý vliv na kvalitu projekce.

Kromě toho mají filmové kopie pořizované ve velkém množství a v krátkém čase také často poměrně špatnou kvalitu.

■ Výhody digitální projekce

V případě digitální projekce je obraz zcela bez prachu a škrábanců. Diváci se nesetkají se žádnými známkami mechanického opotřebení, ať už se jedná o první nebo dvousté promítání daného filmu. Jasná obrazu je stálý a vzhledem k tomu, že projekční systém neobsahuje žádné pohyblivé součásti, je obraz také zcela stabilní. Digitální projekce umožňuje promítat obraz na plátna širší než 15 metrů při rozlišení a úrovni kontrastu příjemněm srovnatelné, pokud ne lepší než v případě 35mm filmu. Projekci na takto velká plátna umožnily tři technické novinky.

■ Technologie DMD/DLP

V roce 1987 tři výzkumní pracovníci v americké firmě Texas Instruments vyvinuli čip známý pod zkratkou DMD (Digital Micromirror Device“). Tento čip se skládá z velkého množství mikroskopických zrcadel (každé z nich měří 13,7 mikrometrů), která se mohou velice rychle (během 2 mikrosekund) naklánět do dvou poloh ve vzájemném úhlu 24°.

Paprsek světla, který dopadne na povrch každého z těchto zrcadel, je tedy odražen buď směrem k objektivu projektoru, a zobrazí tak na promítací plátě bílý čtvereček, nebo je odražen mimo osu objektivu, a na promítacím plátě se tak zobrazí černý čtvereček. Jinými slovy, každé ze zrcadel funguje jako světelný vypínač, který je extrémně rychlostí zhasínán a rozsvěcován. Pohyb těchto mikrozrcadel je řízen obvykle pro zpracování obrazu vyvinutými společnostmi Texas Instruments a prodyšným pod obchodním názvem DLP (Digital Light Processing“). Technicky nejvyspělejší DPL obvody navržené speciálně pro digitální kino se nazývají DLP Cinema. Licenci na využití technologie DPL, která umožňuje dosáhnout projekce nejvyšší kvality ve smyslu dosaženého kontrastu a zobrazeného kolorimetrického prostoru, získali tři výrobců projektorů (Barco, Christie a NEC-DPI). Cena této licence je velmi vysoč, což se odraží také v ceně těchto profesionálních projektorů.
Odstíny šedé

Reprodukce barev

Projektory určené pro digitální projekci v kinech jsou vybaveny třemi čipy DMD umístěnými před červeným, zeleným a modrým filtrem. Světelný paprsek je s pomocí hranolu rozdělen na tři části, které jsou před průchodem objektivem projektoru znovu složeny do jednoho paprsku. DMD projektory určené pro domácí použití používají s pomocí rotujícího kotouče s barevnými filtry.

Typy čipů DMD

Existuje několik čipů DMD, které se liší ve své velikosti, rozlišení, úrovni kontrastu a ve formátu. Nejnovější typy čipů DMD jsou uvedeny v následující tabulce.

<table>
<thead>
<tr>
<th>Rozlišení (v pixelech)</th>
<th>Velikost úhlopříčky (v palcích)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024 × 768</td>
<td>0,7</td>
</tr>
<tr>
<td>1280 × 1024</td>
<td>0,9</td>
</tr>
<tr>
<td>1280 × 720</td>
<td>0,9</td>
</tr>
<tr>
<td>2048 × 1080</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Velikost těchto čipů je srovnatelná s políčkem 35mm filmu.
Technologie D-ILA

Vynález společnosti JVC, technologie D-ILA (zkratka pro Image Light Amplification) funguje podobně jako DPL firmy Texas Instruments – na základě odrazu světla. V tomto případě však obraz není vytvářen mikroskopickými zrcadly, ale panelem vyrobeným z reflexního tekutého krystalu, na němž má každý z pixelů rozměr 12,9 mikrometru.

Proud světla z lampy projektoru dopadá na povrch tohoto panelu, který obraz odraží přes soustavu hranolů. Projektor určený pro promítání obrazu ve velkém formátu vyžaduje tři čipy D-ILA.

V červnu 2000 společnost JVC uvedla na trh čip Q XGA s vysokým rozlišením 2 048 × 1 536 pixelů. Tento čip byl použit v prototypu projektoru vyvíjeného ve spolupráci s firmou Kodak.

Technologie SXRD

Také firma Sony vyvinula nový projekční systém založený na čipu s extrémně vysokým rozlišením 4K (4 096 × 2 160 pixelů) známém pod zkratkou SXRD (Silicon X-tal Reflective Display). Tento čip funguje na stejném principu, jako čipy DLP a D-ILA, ovšem v tomto případě jsou pixely ještě menší a měří pouhých 8,5 mikrometru, což je poloviční velikost pixelů na DMD čipu. Díky menší velikosti pixelů se na stejnou plochu vejde ve srovnání s DMD čtyřnásobné množství pixelů. Systém společnosti Sony byl poprvé veřejně představen na veletrhu IBC v Amsterdamu v září roku 2004.
III. Čtyři parametry obrazu

Pro účely srovnání s 35mm projektory jsou digitální projektory klasifikovány dle čtyř základních parametrů obrazu: světelného toku, kolorimetrického prostoru, rozlišení a kontrastu.

■ Světelný tok

Nejvýkonnější lampy, které se v současné době používají v projektořech na 35mm film, mají výkon 7 000 wattů. Množství světla, které dopadá na projekční plátno, musí být alespoň podobné. Efektivní výkon digitálních projektorů se měří v lumenech při dopadu na promítací plátno. V případě menších projektorů určených pro systémy domácího kina postačí 1 000 lumenů, ovšem projektoře určené pro kina musí dosahovat hodnoty alespoň 10 000 lumenů.

■ Kolorimetrický prostor

■ Rozlišení

Srovnávat rozlišení digitálního obrazu a obrazu získaného z filmu na bázi sloučenin stříbra je obtížné. Teoreticky je rozlišení negativního 35mm filmu stejné, ne-li vyšší než rozlišení digitálního obrazu. V praxi se však divák nesetkává s filmovým negativem, ale pozitivním kopí získanou z intermediátu negativu, který sám je kopii intermediátu pozitivu, který sám je také kopií. S každou fází kopií ovšem se zrnitost filmu zvyšuje a subjektivní pocit ostrosti snižuje. Tento efekt je často ještě dále umocněn mechanickými nepřesnostmi některých 35mm projektorů. V případě digitální projekce je minimální požadované rozlišení nejméně 2 000 pixelů na řádek.

■ Kontrast

Kontrast obrazu se měří tak, že porovnáme množství světla na zcela bílé části obrazu s množstvím světla na zcela černé části obrazu. Řešení je v rozlišení negativního 35mm filmu, které je vyšší než rozlišení digitálního obrazu. V praxi je však divák nesetkává s filmovým negativem, ale pozitivním kopí získanou z intermediátu negativu, který sám je kopii intermediátu pozitivu, který sám je také kopií. S každou fází kopií ovšem se zrnitost filmu zvyšuje a subjektivní pocit ostrosti snižuje. Tento efekt je často ještě dále umocněn mechanickými nepřesnostmi některých 35mm projektorů. V případě digitální projekce je minimální požadované rozlišení nejméně 2 000 pixelů na řádek.
IV. Vybavení

Výrobci projekčních zařízení a serverů, které jim poskytují obraz, nabízejí celou řadu technických a komerčních řešení. Množství těchto zařízení na trhu roste a zájem o ně projevuje stále více lidí. Konkurence tedy přirozeně stlačí ceny dolů. Majitelé kin by ale neměli očekávat žádné zázraky – tato technologie je velmi složitá a trh je omezený. K dispozici je několik vysoce výkonných projektorů, ale jen velmi málo z nich splňuje normy stanovené pro promítání filmů na velkých plátních v dostatečně vysoké kvalitě.

■ Projektory

Pro vysoce kvalitní kinoprojekci je v současné době nejvhodnější technologie DLP založená na čipech DMD společnosti Texas Instruments. Licence na používání této technologie byla zatím udělena třem výrobcům: Barco (Belgie), Christie (USA) a NEC-Digital Projection (Japonsko). Uvádíme zde v abecedním pořadí seznam vybraných vysoce kvalitních projektorů určených pro použití v kinech. Jejich maloobchodní ceny se liší podle určitých parametrů (zejména podle typu zvoleného objektivu), ale pohybují se zhruba v rozpětí od 70 000 EUR do 110 000 EUR.

Cena zcela nového 35mm projektoru činí v současné době asi 50 000 EUR, což je investice s návratností přibližně 5 až 7 let. Životnost projektoru je minimálně 20 let. Náklady na údržbu se odhadují na 5 až 7 % pořizovací ceny ročně. Pokud jde o digitální projektor, neexistuje zde samozřejmě žádný precedent, podle kterého by bylo možno posuzovat jejich životnost. Podle odhadů by to mělo být od 5 do 10 let, což viceméně odpovídá době nutné k odepsání celé hodnoty zařízení. Předpokládá se, že nákupy na údržbu dosáhnou 10 až 15 % pořizovací ceny.

BARCO

Společnost Barco dodává na trh dva digitální projektory speciálně určené pro kinoprojekci.

DP 30

DP 30 používá tři 0,9palcové matice DLP Cinema v poměru 5/4 s rozlišením 1 280 × 1 024 pixelů. Udávaný světelný tok je 6 500 lumenů a kontrastní poměr 1 250:1. Maximální doporučená šířka plátna je 10 metrů. Příkon je 2 550 W, barevná hloubka 15 bitů. K dispozici je anamorfní objektiv se zvětšením 1,5 a 1,9. Lampa se dodává se zárukou na 1 000 hodin provozu.

DP 50

Obecně řečeno, DP 50 má stejně technické parametry jako DP 30 se třemi čipy DLP Cinema, rozlišením 1 280 × 1 024 pixelů a kontrastním poměrem 1 350:1. Jeho barevná hloubka je 15 bitů. Anamorfní objektiv lze použít při zvětšení 1,5 a 1,9. V březnu 2004 byl DP 50 nahrazen DP 100 a již není v prodeji.

DP 100

CHRISTIE

CINEMECCANICA

Cinemeccanica podepsala partnerskou dohodu se společností Barco, která vyrábí elektronické obrazové obvody (15bitový čip DMD s rozlišením 2 048 x 1 080 pixelů). Zbyvající část projektoru navrhla tato italská firma, která je zavedeným konstruktérem 35mm promítacích zařízení. Hlavní ovládací prvky digitální jednotky jsou umístěny na zadním panelu, což usnadňuje její instalaci vedle stávajícího 35mm projektoru. Používá také standardní xenonové lampy. Počet mechanických součástí v jednotce – zejména chladicích ventilátorů – byl zredukován na minimum. Ve spojení se servery společnosti Avica je tento projektor již v plném provozu ve třech kinech v Itálii, dvě z nich jsou v Miláně a třetí v Porte Sant’Elpidio.

NEC / DIGITAL PROJECTION

Další projektoory ve stádiu vývoje

JVC / KODAK

JVC a Kodak vyvíjejí svůj vlastní projektor s vysokým rozlišením, který používá čipy D-ILA s rozlišením 2 048 × 1 538 pixelů a úhlopříčkou 1,3 palce. Kontrastní poměr projektoru je 1 000:1 a světelný tok 7 000 lumenů. JVC také vyvíjí druhý model s rozlišením 3 840 × 2 048 pixelů a čipy o velikosti 1,7 palce. Jedná se o systém, který Kodak používá ve svém výzkumném středisku Kodak Imaging Technology Center v Los Angeles. v současné době se partnerství mezi společnostmi JVC a Kodak nachází na mrtném bodě a projektoory nejsou v prodeji.

SONY

Sony samostatně vyvíjí nový systém založený na čipu 4K s velmi vysokým rozlišením označovaném jako SXRD (Silicon X-tal Reflective Display) s rozlišením 4 096 × 2 160 pixelů a úhlopříčkou 1,55 palce. Čip funguje na stejném principu odrazu jako čípy DLP a DILA. Společnost Sony již zkonstruovala dva projektoory: SRX-R110 se světelným tokem 10 000 ANSI lumenů a SRX-R105 se světelným tokem 5 000 lumenů. Předpokládá se, že do prodeje budou přístroje uvedeny ke konci roku 2005. Otázkou zůstává, zda tyto projektoory splní kolorimetrické požadavky.
Servery

Do projektorů dodávají obraz počítačové servery, které nahrazují tradiční 35mm filmové pásky. Hlavní film, reklamy, krátké filmy a upoutávky jsou uloženy na zabezpečených pevných disicích v zakódovaném a z bezpečnostních důvodů zašifrovaném formátu, ze kterých se také spouštějí. Obrovská velikost surových digitálních souborů si vyžaduje použítí určité formy kompresy, která ale musí mít co možná nejméně vliv na kvalitu promítaného obrazu. Jen pro představu, 90minutový celovečerní film zabere i po kompresi přibližně 60 GB paměti.

Kompresní normy

Existuje několik standardních kompresních kodeků, které jsou navzájem neslučitelné. Spotřebitelům je neznámější kodek MPEG 2 (vyvinutý expertní skupinou pro datovou kompresi videosouborů Motion Picture Expert Group), který se v současné době používá ke kódování filmů na DVD. Účelem tohoto kodeku se však blíží ke konci a na trh přicházejí jiné matematické algoritmy určené k minimalizaci dopadu kompresního procenta na kvalitu obrazu. Jako nejširším je jeví JPEG 2000, ale ten je stále ještě v závěrečných stádiích vývoje. Než bude vývoj tohoto kodeku dokončen, rozhodli se někteří výrobci serverů instalovat na svých zařízeních vlastní kompresní kodeky. Většina serverů pracuje se systémem MPEG 2 s výjimkou serveru V1-HD od společnosti Doremi, který jako první používá kodek JPEG 2000. Maloobchodní cena serverů se pohybuje zhruba v rozpětí od 15 000 EUR do 25 000 EUR.

AVICA

Avica dodává na trh serverové řešení pro kina, které se skládá z centrálního serveru (Filmstore Central) napojeného na jednotlivé přehrávače (Filmstore Player) v každém sále. Servery společnosti Avica zatím neobsahují kodek JPEG 2000. Výrobce však tvrdí, že přístroj s ním bude v budoucnu kompatibilní.

DOLBY

Zvukové dekóry a zesilovače pro kina od společnosti Dolby jsou již součástí každé promítací kabině, takže se zdá být logické, že tato společnost proniká také do světa obrazu. Společnost Dolby vyvinula dvě nová zařízení, Show Player a Show Store, která zpracovávají jak zvuk, tak obraz. Vlastní předem zakódovaná filmová data jsou uložena na pevných disicích v přístroji Show Store, který dokáži pojmut až 5 nebo 6 celovečerních filmů, z nichž každý má velikost kolem 60 GB. Dosud se obraz zpracovává v rozlišení HD, tj. 1 920 × 1 080 pixelů. v současné době se serverové systémy Show Store a Show Player prodávají za maloobchodní cenu kolem 27 000 USD. Zakódování filmu představuje jednorázovou nákladovou položku ve výši 10 000 USD. Cena každé digitální kopie se rovná nákladům na pořízení pevného disku, na kterém se uchovává, což je zanedbatelná částka. Komerčně tento systém již využívají tři kina v USA a jedno ve Velké Británii.

DOREMI

XDC / EVS GROUP

KODAK

V USA uvedla společnost Kodak na trh řadu serverů určených především pro projekci bloků reklam a filmových upoutávek. V současnosti se tyto systémy využívají v 900 kinosálech, ale servery nejsou vhodné k promítání celovečerních filmů. V dohledné době by měl být na trh uveden nový model CineServer MN2000. Bude kompatibilní se směrnicemi sdružení Digital Cinema Initiative. Veřejnosti byl představen loni v Londýně a v současné době se také testuje v jednom kině v USA.

QUVIS

V. Zavádění norem

■ 35mm: Moc celosvětového standardu

Dne 2. února 1909 přijal Mezinárodní kongres filmových producentů a distributorů, jemuž předsedal Georges Méliès, Edisonův 35mm filmový formát se čtyřmi perforacemi na snímek jako normu. Od té doby byl 35mm formát uznáván po celém světě, což umožnilo výrobu a výměnu filmových kopií k promítání na jakémkoli projektoru.

Tento průvodce je úvodem do digitálních technologií a zařízení, které se používají k promítání filmů v kinech na kvalitativních úrovních odpovídajících alespoň projekci 35mm filmu. Dosud nebyla zavedena žádná jednotná mezinárodní norma pro digitální projekci, i když obecné koncepce budoucích standardů se postupně formují.

■ DCI (Digital Cinema Initiatives)

Vzhledem k absenci mezinárodního úsilí o stanovení oborových norem, které by bylo vedeno na úrovni států, se sedm významných amerických filmových společností (Disney, Fox, MGM, Paramount, Sony Pictures Entertainment, Universal a Warner Bros.) rozhodlo spojit své síly. Vytvořily sdružení Digital Cinema Initiatives (DCI), jehož úkolem bylo vypracovat seznam specifikací. Vzhledem k ekonomické a strategické síle těchto společností si žádný výrobce nedovolí tyto specifikace přehlížet, a ty se tak stanou de facto biblí celého filmového průmyslu. DCI ve skutečnosti nezformulovalo jen jednu normu digitální projekce, ale hned čtyři Technické specifikace lze rozdělit do čtyř různých kategorií v sestupném pořadí podle kvality. Do kategorie s nejvyšší kvalitou patří kina s plátny širší než 15 metrů, do nejnižší pak videoprojekce na veřejných místech. Je také zajímavé povšimnout si, že jako standardní formát komprese obrazu se udává JPEG 2000, ne MPEG 2, který se stále ještě používá pro digitální projekci D-Cinema a také pro DVD (i když v ještě více komprimované podobě a tudíž nižší kvalitě).

■ Francouzský standard AFNOR a CST

Ve Francii sestavila pracovní skupina pod záštitou CST (Francouzská národní technická komise) seznam norem, které v současné době schvaluje francouzský úřad pro průmyslové normy AFNOR. Obecně řečeno, nová francouzská norma přejímá doporučení DCI, např. minimální rozlišení 2 048 pixelů na řádek (neboli 2K), rychlost 24 nebo 48 snímků za sekundu a barevná hloubka 12 bitů. Jakmile konzultační proces skončí a norma bude přijata – k čemuž pravděpodobně dojde do konce roku 2005 – bude úkolem CNC (Centre National de la Cinématographie) definovat, jak se bude norma uplatňovat. Předpokládá se, že zákonné rozhodnutí vstoupí v účinnost nejdříve na začátku roku 2006.

■ European Digital Cinema Forum (EDCF)

Šifrování a bezpečnost

Pro držitele filmových práv má prvořadý význam ochrana proti kopírování. Filmový průmysl nechce utrpět ztráty, které zaznamenal hudební průmysl v důsledku digitálního kopírování a sdílení souborů v peer-to-peer sítích. Výrobci digitálních projektorů a serverů si jsou plně vědomi těchto problémů a zakomponovali do svých přístrojů digitální šifrování, které prakticky znemožňuje kopírování dat a ztěžuje nelegální nahrávání filmů pomocí videokamery v kině. Promítaný obraz může být opatřen „vodoznakem“ značkami, které jsou neviditelné pouhým okem, ale které budou viditelné na záznamu z videokamery a na všech jeho následných kopích. Pirátská kopie vyrobená z takto označeného filmu může být tudíž vysledována až zpět ke zdroji: bude možno zjistit místo, den a dokonce i příslušnou projekci, při které byla kopie poprvé pořízena. Bude však obtížné zavést systém, který nabíde absolutní bezpečnost a přitom poskytne provozovatelům kin svobodu promítat filmy způsobem, jakým chtějí. Dosud ještě nebylo dosaženo žádné dohody mezi studií a provozovateli kin o systému, který by nabízel ochranu a zároveň poskytoval kinům privilegia, která mají v případě 35mm kopí.

Europa Cinemas
Zavádění norem

Průvodce digitálním kinem

20
VI. Klíčové mezníky v historii digitální kinematografie

Zde je několik klíčových mezníků v historii digitální filmové tvorby a distribuce:

1990
 „Dick Tracy“ je prvním filmem s digitálním zvukem.

1992
 „Batman se vrací“ je prvním filmem se zvukem ve formátu Dolby Digital.

1992
 „Juráský park“ je prvním filmem s digitálním zvukem ve formátu DTS.

červen 1999
 „Hvězdné války: Epizoda 1“. Film se v USA komerčně promítá ve čtyřech digitálně vybavených kiních (2 JVC, 2 TI)

1999
 Digitální distribuce animovaných filmů společnosti Disney „Příběh hraček 2“, „Tarzan“ a „Dinosauři“

únor 2000
 „Příběh hraček 2“ je první digitální projekcí v pařížském kině Gaumont Aquaboulevard (rozměry plátna 15,4 × 8,3 m)

2001
 „Vidocq“, režie Pitof, je prvním filmem na světě natočeným zcela ve formátu HD (několik týdnů před filmem „Hvězdné války: Epizoda 2“)

Cannes 2002
 „Tanec v temnotách“ se stává prvním filmem natočeným bez použití filmu, který získal Zlatou palmu na festivalu v Cannes

únor 2004
 „Poslední samuraj“ se stává 100. celovečerním filmem distribuovaným v digitální podobě

březen 2004
 „Collateral“, režie Michael Mann, je prvním filmem natočeným převážně kamerou Thomson Viper

2004
 „Dva bratři“, režie Jean-Jacques Annaud, jsou natočení ve formátu HD Cam Cinealta

2004
 „Les gens honnetes vivent en France“, režie Bob Decout, je prvním celovečerním filmem natočeným ve formátu HD společnosti Panasonic

září 2004
 První veřejné předvedení projektoru společnosti Sony s rozlišením 4K

listopad 2004
 „Sarabanda“, režie Ingmar Bergman, je natočen ve formátu HD a distribuuje se do kin pouze ve formátu HD
VII. Internetové adresy

Zde je seznam internetových stránek zabývajících se digitální kinematografií:

Výrobci projektorů:
Barco www.barco.com
Christie www.christiedigital.com
Cinemecanica www.cinemecanica.it
Digital Projection www.digitalprojection.com
JVC www.jvc-victor.co.jp
NEC www.nec-pj.com/products/dlpcinema/
Sony www.sony.com

Výrobci serverů:
Avica www.avicatech.com
Doremi www.doremilabs.com
Kodak www.kodak.com
Quvis www.quvis.com
XDC www.xdcinema.com

Komprese:

Digitální zvukové systémy:
Dolby www.dolby.com
DTS www.dtsonline.com

Standardy:
AFNOR Association Française de Normalisation www.afnor.fr/portail.asp
CST Commission Supérieure Technique www.cst.fr
DCI Digital Cinema Initiatives www.dcmovies.com
EDCF European Digital Cinema Forum www.digitalcinema-europe.com

Všeobecné informace o digitální kinematografii:
D Cinema today Platforma s informacemi o digitální kinematografii (v angličtině) www.dcinematoday.com
Digital Cinema Platforma s informacemi o digitální kinematografii (ve francouzštině) www.digital-cinema.org
Texas Instruments Informace o technologii DLP Cinema www.dlp.com
UK Film Council Informace o síti digitálních kin Digital Screen Network www.ukfilmcouncil.org.uk
VIII. Glosář
Zde jsou některé zkratky často používané v článkách o digitální kinematografii:

<table>
<thead>
<tr>
<th>Zkratka</th>
<th>Význam</th>
</tr>
</thead>
<tbody>
<tr>
<td>2K</td>
<td>Rozlišení 2 048 pixelů na řádek</td>
</tr>
<tr>
<td>4K</td>
<td>Rozlišení 4 096 pixelů na řádek</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute (Americký národní ústav pro normalizaci)</td>
</tr>
<tr>
<td>D-ILA</td>
<td>Digital Image Light Amplification. Technologie vyvinutá společností JVC.</td>
</tr>
<tr>
<td>DLP</td>
<td>Digital Light Processing (digitální zpracování světla)</td>
</tr>
<tr>
<td>DMD</td>
<td>Digital Micromirror Device (digitální mikrozrcátková jednotka)</td>
</tr>
<tr>
<td>DVD</td>
<td>Digital Versatile (Video) Disc (univerzální digitální (video) disk)</td>
</tr>
<tr>
<td>HDTV</td>
<td>High Definition Television (televize s vysokým rozlišením)</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute for Electrical and Electronics Engineering (Institut elektrotechnických a elektronických inženýrů)</td>
</tr>
<tr>
<td>JPEG 2000</td>
<td>Standardní kodek pro kompresi digitálního obrazu</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display (displej z tekutých krystalů)</td>
</tr>
<tr>
<td>MPEG</td>
<td>Motion Picture Expert Group (expertní skupina pro datovou kompresi videosouborů)</td>
</tr>
<tr>
<td>NTSC</td>
<td>National Television Standard Committee (americký národní úřad pro televizní vysílání)</td>
</tr>
<tr>
<td>RGB</td>
<td>Červená, zelená, modrá, tři základní barevné složky světla</td>
</tr>
<tr>
<td>SMPTE</td>
<td>Society of Motion Picture and Television Engineers (sdružení filmových a televizních techniků)</td>
</tr>
<tr>
<td>SXRD</td>
<td>Silicon X-tal Reflective Display (reflexní displej z křemíkových krystalů)</td>
</tr>
<tr>
<td>WM 9</td>
<td>Kompresní systém Windows Media Player 9, též známý jako VC 1</td>
</tr>
</tbody>
</table>
IX. Poděkování

Společnost Europa Cinemas by chtěla poděkovat členům správní rady za jejich pomoc při přípravě tohoto průvodce:

Nico Simon, viceprezident, vedoucí pracovní skupiny „Digital Cinema"

Ian Christie, viceprezident

Henk Camping, generální tajemník

Jean-Marie Hermand, finanční ředitel

Poznámky